Approximation and Learning of Convex Superpositions
نویسندگان
چکیده
منابع مشابه
Approximation by Superpositions of a Sigmoidal Function*
Abstr,,ct. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of sing...
متن کاملApproximation by superpositions of a sigmoidal function
We generalize a result of Gao and Xu [4] concerning the approximation of functions of bounded variation by linear combinations of a fixed sigmoidal function to the class of functions of bounded φ-variation (Theorem 2.7). Also, in the case of one variable, [1: Proposition 1] is improved. Our proofs are similar to that of [4].
متن کاملApproximation by Superpositions of a Sigmoidal Function*
Abstr,,ct. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of sing...
متن کاملApproximation by Superpositions of a Sigmoidal Function*
Abstr,,ct. In this paper we demonstrate that finite linear combinations of compositions of a fixed, univariate function and a set ofaffine functionals can uniformly approximate any continuous function of n real variables with support in the unit hypercube; only mild conditions are imposed on the univariate function. Our results settle an open question about representability in the class of sing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 1997
ISSN: 0022-0000
DOI: 10.1006/jcss.1997.1506